Omeprazole induces altered bile acid metabolism.
نویسندگان
چکیده
BACKGROUND It has been reported that the acidity of gastric contents could be an important factor in regulating jejunal flora. AIMS To investigate the effects of omeprazole induced changes in gastric pH on jejunal flora and bile acid metabolism. METHODS Twenty one patients with gastric ulcer and 19 healthy volunteers were studied. Deconjugation of bile acids was detected using a bile acid breath test. Jejunal fluid was aspirated using a double lumen tube with a rubber cover on the tip and deconjugation was examined using thin layer chromatography. Fat malabsorption was detected by a triolein breath test. RESULTS In the bile acid breath test, expired breath samples from all patients and healthy volunteers showed significantly greater 14CO2 specific activity after omeprazole treatment (20 mg/day) than before treatment. Bacterial overgrowth was found in the jejunal fluid and gastric juice of both ulcer patients and healthy volunteers after omeprazole treatment. The following species were identified: Escherichia coli, Candida albicans, enterococcus, Lactobacillus bifidus, Bacteroides vulgatus, B uniformis, Eubacterium lentum, Eu parvum, and Corynebacterium granulosum. All of these species, except E coli and C albicans, deconjugate bile acids. There was a significant correlation between 14CO2 activity and gastric pH, both before and after omeprazole treatment in both groups. The triolein breath test revealed impaired fat absorption in both groups after omeprazole treatment. CONCLUSIONS Both patients with gastric ulcer and healthy volunteers exhibited increased deconjugation of bile acids caused by bacterial overgrowth in the jejunum and fat malabsorption after omeprazole treatment. The bacterial over-growth consisted of both anaerobes and aerobes with deconjugation ability and was probably associated with an omeprazole induced shift to neutral pH in the gastric juice.
منابع مشابه
Deciphering the Differential Effective and Toxic Responses of Bupleuri Radix following the Induction of Chronic Unpredictable Mild Stress and in Healthy Rats Based on Serum Metabolic Profiles
The petroleum ether fraction of Bupleuri Radix which is contained in the traditional Chinese medicine prescription of Xiaoyaosan (XYS) may have a therapeutic effect in depressed subjects based on the results of our previous study. It has been reported that Bupleuri Radix can cause liver toxicity following overdosing or long-term use. Therefore, this study aimed to decipher the differential effe...
متن کاملTargeting the Enterohepatic Bile Acid Signaling Induces Hepatic Autophagy via a CYP7A1–AKT–mTOR Axis in Mice
BACKGROUND & AIMS Hepatic cholesterol accumulation and autophagy defects contribute to hepatocyte injury in fatty liver disease. Bile acid synthesis is a major pathway for cholesterol catabolism in the liver. This study aims to understand the molecular link between cholesterol and bile acid metabolism and hepatic autophagy activity. METHODS The effects of cholesterol and cholesterol 7α-hydrox...
متن کاملBile acid metabolism and the pathogenesis of type 2 diabetes.
Type 2 diabetes (T2D) is a growing health problem worldwide, but the currently available strategies for therapy and prevention are insufficient. Recent observations indicate that bile acid homeostasis is altered in T2D. Bile acids are metabolic regulators that act as signaling molecules through receptor-dependent and -independent pathways. The most prominent signaling molecules mediating bile a...
متن کاملRNA-binding protein ZFP36L1 maintains posttranscriptional regulation of bile acid metabolism.
Bile acids function not only as detergents that facilitate lipid absorption but also as signaling molecules that activate the nuclear receptor farnesoid X receptor (FXR). FXR agonists are currently being evaluated as therapeutic agents for a number of hepatic diseases due to their lipid-lowering and antiinflammatory properties. FXR is also essential for maintaining bile acid homeostasis and pre...
متن کاملMetabolism of sulfonate analogs of ursodeoxycholic acid and their effects on biliary bile acid composition in hamsters.
The metabolism of sodium 3 alpha,7 beta-dihydroxy-5 beta-cholane-24-sulfonate and sodium 3 alpha,7 beta-dihydroxy-24-nor-5 beta-cholane-23-sulfonate was studied in hamsters. In bile fistula animals these sulfonate analogs of ursodeoxycholic acid were absorbed mainly from the terminal ileum and secreted rapidly into the bile without biotransformation or conjugation. After oral administration, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Gut
دوره 42 2 شماره
صفحات -
تاریخ انتشار 1998